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Correlation between Weibull moduli for tensile
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A numerical simulation was designed and performed to produce uniaxial tensile strength
and three-point bending strength data. It was assumed that the specimen could be divided
into many small units of volume for which the tensile strength followed a three-parameter
Weibull distribution, characterized by the parameters m, σ0 and σu. Statistical analysis of
the strength data showed that the variation of the bending strength could be characterized
by the explicit form of the three-parameter Weibull function as deduced from only the
tensile test data. A strong correlation was found to exist between the Weibull modulus,
mE,B, estimated for the bending strength and that for tensile strength, mE,T. The difference
between mE,B and mE,T is dependent on m but independent of the ratio of σ0 to σu.
C© 2003 Kluwer Academic Publishers

1. Introduction
The fracture of brittle ceramics usually starts from de-
fects preexisting in the material. As a consequence of
the natural variability in size, location and severity of
the preexisting defects, the measured fracture strength
for a given ceramic usually shows a large scatter. The
method most commonly used to characterize the statis-
tical variation of the measured strength of ceramics is
to apply Weibull statistical theory. The Weibull model
assumes that there is a local strength associated with
each small element of volume in a body. The risk of
rupture for each element is integrated over the whole
test specimen such that the probability of failure, Pf, is
given as [1]

Pf = 1 − exp

[
−

∫
V

(
σ − σu

σ0

)m

dV

]
(1)

where σ is the stress at a point and V is the spec-
imen volume. The Weibull parameters σu, σ0 and m
are the location parameter (or threshold strength), the
scale parameter (or characteristic strength) and the
shape modulus or more generally, the Weibull mod-
ulus, respectively.

Denoting σf as the maximum tensile stress that can
exist in the test specimen, i.e., the fracture strength of
the specimen, Equation 1 can be rewritten as

Pf = 1 − exp

[
− Ve

(
σf − σu

σ0

)m
]

(2)

where Ve is the effective volume of the test specimen
and can be expressed as

Ve =
∫

V

(
σ − σu

σf − σu

)m

dV (3)

For specimens tested in uniaxial tension, σ is equal
to σf and Equation 3 gives Ve = V . Thus Equation 2 can
be simplified as

Pf = 1 − exp

[
−

(
σf − σu

MOR0

)m
]

(4)

where MOR0 = σ0V −1/m
e is a constant. By rearrange-

ment, Equation 4 may be transformed as

ln

[
ln

(
1

1 − Pf

)]
= m ln(σf − σu) − m ln MOR0 (5)

Equation 5 shows that a plot of ln {ln[1/(1 − Pf)]}
against ln(σf − σu) will give a straight line with a slope
of m.

Since it is very difficult to perform a tensile test
on brittle ceramics, [2], the fracture strength is gener-
ally measured in flexure, either using three-point bend-
ing or four-point bending [3]. Therefore, extension of
the three-parameter Weibull distribution, Equation 1,
to polyaxial stress states has been a interesting prob-
lem for a long time. Extensive work has been con-
ducted to analyze the dependence of the Weibull mod-
ulus on the polyaxiality of the stress state [4–6] and
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some interesting conclusions have been obtained the-
oretically. As a completion to the previous theoretical
studies, in the present study, a numerical simulation
procedure was designed to produce three-point bend-
ing strength data for a ceramic for which the tensile
strength follows a three-parameter Weibull distribu-
tion. Then the resulting bending strength data were
analyzed to ascertain (i) whether or not the bending
strength were characterized well by the explicit form of
the three-parameter Weibull function, Equation 4, and
(ii) whether or not the apparent three-parameter Weibull
modulus resulting from the bend strength data could be
correlated with its true value, i.e., the three-parameter
Weibull modulus arising from the tensile strength data
for the same material.

2. Numerical analysis procedure
2.1. Generation of the strength data
A computer program was designed to predict the bend-
ing strength of specimens, with traditional dimensions
of 3 mm thick, 4 mm wide and 36 mm long, which were
tested in three-point bending with a span of 30 mm. The
material was assumed to have a tensile strength which
followed a three-parameter Weibull distribution. The
procedure of the simulation was as described below:

First, the volume under load of each bend test spec-
imen was divided into 23040 (= 12 × 16 × 120) vol-
ume units with dimensions of 0.25 × 0.25 × 0.25 mm
(Fig. 1). Secondly, assuming that the tensile strength
of each of these volume units could be described by
Equation 4 with a set of prescribed values for the
three parameters m, σu and MOR0, a set of computer-
generated random numbers in the range 0 to 1 were sub-
stituted for the fracture probability, Pf, in Equation 4 to
calculate the fracture strength, (σf,U)i, for each volume
unit. Then, using the coordinate values, xi, yi and zi
(see Fig. 1), for each unit, the applied bending force,
Fi, which would result in a stress of (σf,U)i, in the corre-
sponding unit was calculated according to the standard
theory of mechanics of materials [7]. Finally, the bend-
ing strength, σf,B, of the specimen was calculated using
the minimum among the resultant 23040 Fi-values and
the specimen dimensions.

For each set of prescribed values of m, σu and MOR0,
a total of 30 specimens were “tested” according to the
procedure described above to yield a sample distribu-
tion of bending strength. For each set of values, a total
of 1000 samples, each containing 30 strength data, were
generated. In all, 54 different sets of m, σu and MOR0
values were examined, giving a grand total of 54,000

Figure 1 The three-point bend test specimen comprising 23040 volume
units. Only one quarter of the specimen is shown.

strength distributions and 162,000 individual values of
strength. A similar procedure was adopted to obtain the
tensile strength, σf,T, of “specimens” with the same di-
mensions, 3 mm thick, 4 mm wide and 36 mm long. To
do this, the tensile strength for a given “specimen” was
determined to be the minimum among resultant 23040
(σf,U)i-values. Similarly, for each set of prescribed val-
ues of m, σu and MOR0, a total of 30 specimens were
“tested” according to the procedure described above to
yield a sample distribution of tensile strength and a to-
tal of 1000 samples, each containing 30 strength data,
were generated for the purpose of statistical analysis.

2.2. Estimation of the Weibull modulus
For each sample of strength distribution data, the
Weibull modulus was estimated using the traditional
least-squares method. This was done by ordering the
30 data from the lowest to the highest. The i-th re-
sult in the set was assigned a cumulative probability of
failure, Pi, [8–11]

Pi = i − 0.5

n
(6)

Note that the stress threshold σu for bend specimens is
clearly determined by the lowest strength of the volume
unit(s) subjected to the maximum bending moment.
Therefore, it was assumed that the location parame-
ter σu is independent of the test configuration and is
constant, i.e., σu,B = σu,T = σu. Using the prescribed
σu-value, a linear regression analysis was conducted,
according to Equation 5, with the “measured” strengths
and the corresponding probabilities to give the esti-
mated Weibull parameter mE. In the following sections,
the estimated Weibull moduli are denoted as mE,T and
mE,B, where the subscripts “T” and “B” represent ten-
sion and bending, respectively.

3. Results and discussion
Fig. 2 shows examples of the Weibull plots, i.e., the
plots of ln{ln[1/(1 − Pf)]} against ln(σf − σu), of the
“measured” tensile strength, σf,T, corresponding to dif-
ferent prescribed values of the three parameters m, σu
and MOR0. In constructing these plots, the Pf-value

Figure 2 Weibull plots of the “measured” tensile strength, σf,T. The
strength data were generated using σu = 250 MPa and MOR0 = 500 MPa.
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Figure 3 Plot of the estimated Weibull moduli from the tensile strength
data as a function of the prescribed values of m, σu and MOR0. The
straight line in this figure is defined by mT = m.

corresponding to each “specimen” was calculated us-
ing Equation 6. As can be seen, the linearity of the
resultant Weibull plot is significant in each case.

Using the least-squares method described above, the
Weibull modulus for each sample distribution of tensile
strength was estimated and, for the 1000 samples cor-
responding to a given set of the prescribed values of m,
σu and MOR0, the average value, mT, and the standard
deviation, ST, of the resultant 1000 mE,T were calcu-
lated. Fig. 3 shows mT as functions of the prescribed
m, σu and MOR0. Clearly, all the data points in Fig. 3
fall along a straight line defined by mT = m, indicat-
ing that the numerical simulation procedure designed
and performed in the present study is reasonable. The
coefficient of variation of mE,T, i.e., the ratio of the
standard deviation, ST, to the average value, mT, was
found to be independent of the prescribed values of m,
σu and MOR0 and has a value of about 18%. Such a large
scatter in mE,T is not surprising. In the previous stud-
ies [9, 10], the coefficient of variation of the estimated
Weibull modulus for strength data which follow a two-
parameter Weibull distribution has been reported to be
sample-size-dependent and also has a typical value of
about 18%.

The Weibull plots of the “measured” bending
strengths, σf,B, corresponding to different prescribed
values of the three parameters m, σu and MOR0 are
shown in Fig. 4. By comparing Fig. 4 with Fig. 2, it can
be seen that, for a given set of prescribed values of the
three parameters m, σu and MOR0, the resultant bend-
ing strength is always somewhat higher than the tensile
strength. The linearity of the resultant Weibull plot for
bending strength is also significant. This finding may
be very useful.

In general, it was suggested that Equation 4, the ex-
plicit form of the three-parameter Weibull function,
is suitable only for analyzing the variation of tensile
strength. Due to the non-uniformity of the stress distri-
bution in bending specimens, it is very difficult, even
impossible, to expand Equation 1 to a simple explicit
form when studying the statistical properties of bend-
ing strength. Thus, in the past, authors [8, 12, 13]
generally assumed σu = 0 for brittle ceramics and an-
alyzed bending strengths according to the simplified,

two-parameter Weibull function,

Pf = 1 − exp

[
− V ′

e

(
σf,B

σ0

)m
]

(7)

where V ′
e is the effective volume of the test speci-

men and can be treated as a constant for a given test
configuration.

However, it should be pointed out that assuming
σu = 0 seems to be questionable. As can be seen in
Equation 1, the location parameter σu corresponds to a
stress threshold below which the probability of failure
for the test specimen would be zero. In other words, σu
may be considered as the lowest strength for a given
material. According to the classical Griffith criterion,
the fact that a test specimen has a strength of zero means
that the size of the preexisting defect in this specimen
would be infinite. Undoubtedly, this is unreasonable. At
least, such a situation cannot be encountered when the
strength in bending is obtained from specimens with
traditional dimensions of 3 × 4 × 36 mm. Therefore, it
is more appropriate to characterize the bending strength
with a three-parameter Weibull distribution for a given
ceramic. The numerical simulation results shown in
Fig. 4 suggested that the bending strength of ceram-
ics can also be characterized with Equation 4, making
it possible and easy to analyze the bending strength with
a three-parameter Weibull function.

Turning now to the next key issue. This is whether or
not the apparent Weibull modulus, mE,B, yielded by an-
alyzing the bend strength data according to Equation 4
can be correlated with its true value, i.e., the three-
parameter Weibull modulus, m or mE,T, of the tensile
strength for the same material.

Using the least squares method described above, the
Weibull modulus for each sample distribution of bend-
strength was estimated and, for the 1000 samples corre-
sponding to a given set of the prescribed values of m, σu
and MOR0, the average value, mB, and the standard de-
viation, SB, of the resultant 1000 mE,B were calculated.
The calculated mB values are plotted as a function of
mT in Fig. 5, where each data point corresponds to a
given set of prescribed values of m, σu and MOR0.

Figure 4 Weibull plots of the “measured” bending strength, σf,B. The
strength data were generated using σu = 250 MPa and MOR0 = 500 MPa.
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Figure 5 Relationship between mB and mT for (a) σu/σ0 = 0 and
(b) σu/σ0 	= 0. The dashed lines in these figures are defined by mB = mT.

As can be seen in Fig. 5a, all the data points corre-
sponding to σu/σ0 = 0, i.e., σu = 0, fall along a straight
line defined as mB = mT, indicating that the Weibull
modulus resulting from the bend strengths would be
identical with that from the tensile strengths if the
strength is assumed to follow a two-parameter Weibull
distribution.

However, as shown in Fig. 5b, a slight difference be-
tween mB and mT was observed when the prescribed
value of σu is not equal to zero. Such a difference, de-
fined as � = (mB − mT)/m, is now plotted as a func-
tion of the prescribed m in Fig. 6. Although each set of
the five data corresponding to a given m shows a some-
what large scatter, it is reasonable to conclude from
Fig. 6 that the difference between mB and mT is inde-
pendent of the ratio of σu to σ0. A similar conclusion
can be obtained by comparing the empirical probabil-
ity density functions (PDF) of mE,B. Fig. 7 shows the
PDFs of mE,B corresponding to different σu/σ0 ratios.
Clearly, it can be concluded that to a first approximation
that there is no statistical difference between the mE,B-
values obtained for different σu/σ0 ratios except for
σu/σ0 = 0.

Fig. 6 also indicates that � is strongly dependent on
and decreases with the prescribed m. Such an experi-
mental phenomenon can be understood easily by noting
that the Weibull modulus, m, is a measure of the scat-

Figure 6 The difference between mB and mT as a function of the pre-
scribed value of m.

Figure 7 Probability density functions of the estimated mE,B for differ-
ent prescribed σu/σ0 ratios and a fixed prescribed m of 10.

ter of strength variation and a larger m would lead to a
lower dispersion of fracture strengths.

A further comment should be made on the large scat-
ter in � corresponding to a given m. In general, there
are some uncertainties in the estimated values of the
Weibull parameters associated with the inherent statis-
tical fluctuations due to taking small sample sizes. In
the present study, mB corresponding to a given set of
prescribed values of m, MOR0 and σu exhibits a co-
efficient of variation of about 18%. This would make
mB-values obtained from different samples of 1000 es-
timated mE,B different from each other. A similar phe-
nomenon was observed when analyzing the statistical
variation of mT. Note that the above analysis has shown
that mB is independent of the ratio of σu to σ0. There-
fore, the five mB-data corresponding to different σu/σ0
ratios can be considered to a small statistical sample
and, thus, it seems not unreasonable to expect the large
scatter in the �-values.

The results shown in Figs 5b and 6 make it possible to
correlate the estimated mB with its true value, m, with
a simple equation in which the other two parameters,
σu and σ0, are excluded. As shown in Fig. 5b, a good
linear relationship between mB and mT exists and this
linear relationship can be expressed as

mB = 0.80 + 0.97mT (8)
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Note that, as shown in Fig. 3, mT ≈ m. Therefore,
Equation 8 can be used as an empirical equation to
correct the estimated mB to its true value. Of course,
this empirical equation is suitable only for the sample
distribution of 30 individual strength data.

It is of interest to make a brief comparison between
the numerical simulation results obtained in the present
study with the previously reported theoretical analysis.
Ichikawa [6] has shown theoretically that, when the
tensile strength of a brittle material follows a three-
parameter Weibull distribution with a Weibull modulus
of m, the three-point bending strength also follows a
three-parameter Weibull distribution but with a Weibull
modulus of (m +2). The result of numerical simulation
presented here is different from this theoretical predic-
tion. This difference seems not to be surprising. In his
work, Ishikawa considered directly the true distribu-
tion parameters, i.e., the distribution parameters for a
sample of infinite size. The present study, however, con-
cerns only small samples of 30 strength data. From a
statistical viewpoint, there will generally be some sys-
tematic variability in the parameters estimated from a
small sample due to inherent statistical fluctuations. In
practice, it is only possible to actually test a limited
number of specimens to obtain a sample distribution of
strength data. Consequently, m can only be estimated
with a sample of limited size. Thus the numerical sim-
ulation results obtained in the present study seem to be
more useful than Ichikawa’s work from the practical
viewpoint.

It should also be pointed out that, in this study, an
arithmetical averaging was used as the measure of the
distribution of the estimated Weibull moduli. Similar
treatment was also employed by other authors [9–11]
in studying the statistical properties of the estimated
Weibull modulus based on a two-parameter Weibull
function. Undoubtedly, different conclusions would be
yielded if other measures, such as the geometric mean
or the 50%-ile value, were considered. Note that the es-
timated Weibull modulus does not follow a normal dis-
tribution [14, 15]. Further study should be conducted to
check the efficacy of the arithmetical average in describ-
ing the statistical properties of the estimated Weibull
modulus.

4. Concluding remarks
The numerical simulation analysis conducted in the
present study suggests that the explicit form of the
three-parameter Weibull function, Equation 4, can be
used to characterize the statistical variation of the bend-
ing strength of a ceramic for which the tensile strength
follows a three-parameter Weibull distribution. This
conclusion is very useful because the strength of brittle
ceramics is usually evaluated by bend testing rather than
tensile testing and, undoubtedly, analysis of the bending
strength based on a three-parameter Weibull function
would be more reasonable than that based on a two-
parameter Weibull function. However, it should be kept
in mind that the Weibull modulus estimated by analyz-
ing the bending strength data according to Equation 4
may be higher than its true value and should be cor-
rected using an empirical relationship between mB and
mT such as Equation 8.
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